Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Komeili, Arash (Ed.)ABSTRACT The bacterial nucleoid is not just a genetic repository—it serves as a dynamic scaffold for spatially organizing key cellular components. ParA-family ATPases exploit this nucleoid matrix to position a wide range of cargos, yet how nucleoid compaction influences these positioning reactions remains poorly understood. We previously characterized the maintenance of carboxysome distribution (Mcd) system in the cyanobacteriumSynechococcus elongatusPCC 7942, where the ParA-like ATPase McdA binds the nucleoid and interacts with its partner protein, McdB, to generate dynamic gradients that distribute carboxysomes for optimal carbon fixation. Here, we investigate how nucleoid compaction impacts carboxysome positioning, particularly during metabolic dormancy when McdAB activity is downregulated. We demonstrate that a compacted nucleoid maintains carboxysome organization in the absence of active McdAB-driven positioning. This finding reveals that the nucleoid is not merely a passive matrix for positioning but a dynamic player in spatial organization. Given the widespread role of ParA-family ATPases in the positioning of diverse cellular cargos, our study suggests that the nucleoid compaction state is a fundamental, yet underappreciated, determinant of mesoscale organization across bacteria. IMPORTANCEBacteria can organize their internal components in specific patterns to ensure proper function and faithful inheritance after cell division. In the cyanobacteriumSynechococcus elongatus, protein-based compartments called carboxysomes fix carbon dioxide and are distributed in the cell by a two-protein positioning system. Here, we discovered that when cells stop growing or face stress, these positioning proteins stop working, yet carboxysomes remain distributed in the cell. Our study shows that the bacterial chromosome, which holds genetic information, can also act as a flexible scaffold that holds carboxysomes in place when compacted. This insight reveals that the bacterial chromosome plays a key physical role in organizing the cell. Similar positioning systems are found across many types of bacteria; therefore, our findings suggest that nucleoid compaction may be a universal and underappreciated factor in maintaining spatial order in cells that are not actively growing.more » « lessFree, publicly-accessible full text available October 8, 2026
- 
            Abstract Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1–protein complexes in living cells.more » « less
- 
            Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains. Here, we leverage the genetically tractable S. pombe model and a separation-of-function allele to elucidate a mechanical function imparted by Swi6 condensation. Using single-molecule imaging, force spectroscopy, and high-resolution live-cell imaging, we show that Swi6 is critical for nuclear resistance to external force. Strikingly, it is the condensed yet dynamic pool of Swi6, rather than the chromatin-bound molecules, that is essential to imparting mechanical stiffness. Our findings suggest that Swi6 condensates embedded in the chromatin meshwork establish the emergent mechanical behavior of the nucleus as a whole, revealing that biomolecular condensation can influence organelle and cell mechanics.more » « less
- 
            Abstract High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins inEscherichia colias a means to determine the nature of biomolecular condensates in bacteria. We demonstrate that condensates form after passing a threshold concentration, maintain a soluble fraction, dissolve upon shifts in temperature and concentration, and exhibit dynamics consistent with internal rearrangement and exchange between condensed and soluble fractions. We also discover that an established marker for insoluble protein aggregates, IbpA, has different colocalization patterns with bacterial condensates and aggregates, demonstrating its potential applicability as a reporter to differentiate the two in vivo. Overall, this framework provides a generalizable, accessible, and rigorous set of experiments to probe the nature of biomolecular condensates on the sub-micron scale in bacterial cells.more » « less
- 
            Chiral plasmonic surfaces with 3D “forests” from nanohelicoids should provide strong optical rotation due to alignment of helical axis with propagation vector of photons. However, such three-dimensional nanostructures also demand multi-step nanofabrication, which is incompatible with many substrates. Large-scale photonic patterns on polymeric and flexible substrates remain unattainable. Here, we demonstrate the substrate-tolerant direct-write printing and patterning of silver nanohelicoids with out-of-plane 3D orientation using circularly polarized light. Centimeter-scale chiral plasmonic surfaces can be produced within minutes using inexpensive medium-power lasers. The growth of nanohelicoids is driven by the symmetry-broken site-selective deposition and self-assembly of the silver nanoparticles (NPs). The ellipticity and wavelength of the incident photons control the local handedness and size of the printed nanohelicoids, which enables on-the-fly modulation of nanohelicoid chirality during direct writing and simple pathways to complex multifunctional metasurfaces. Processing simplicity, high polarization rotation, and fine spatial resolution of the light-driven printing of stand-up helicoids provide a rapid pathway to chiral plasmonic surfaces, accelerating the development of chiral photonics for health and information technologies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
